AbstractMany problems involving DNA can be modeled by families of intervals. However, traditional interval graphs do not take into account the repeat structure of a DNA molecule. In the simplest case, one repeat with two copies, the underlying line can be seen as folded into a loop. We propose a new definition that respects repeats and define loop graphs as the intersection graphs of arcs of a loop. The class of loop graphs contains the class of interval graphs and the class of circular-arc graphs. Every loop graph has interval number 2. We characterize the trees that are loop graphs. The characterization yields a polynomial-time algorithm which given a tree decides whether it is a loop graph and, in the affirmative case, produces a loop re...