AbstractLet Rn be a Euclidean space and let S be a Euclidean semigroup, i.e., a subsemigroup of the group of isometries of Rn. We say that a semigroup S acts discontinuously on Rn if the subset {s∈S:sK∩K≠∅} is finite for any compact set K of Rn. The main results of this work areTheorem.If S is a Euclidean semigroup which acts discontinuously on Rn, then the connected component of the closure of the linear part ℓ(S) of S is a reducible group.Corollary.Let S be a Euclidean semigroup acting discontinuously on Rn; then the linear part ℓ(S) of S is not dense in the orthogonal group O(n).These results are the first step in the proof of the followingMargulis' Conjecture.If S is a crystallographic Euclidean semigroup, then S is a group
Abels H, Manoussos A. Linear semigroups with coarsely dense orbits. Israel Journal of Mathematics. 2...
The partial automorphism monoid of an inverse semigroup is an inverse monoid consisting of all isomo...
Abstract. Consider a finite set of Euclidean motions and ask what kind of conditions are necessary f...
AbstractLet Rn be a Euclidean space and let S be a Euclidean semigroup, i.e., a subsemigroup of the ...
A well known classical theorem due to Bieberbach says that every discrete group Γ of isometries of t...
Let H be a closed subgroup of a Lie group G. The subject of this expository paper is roughly about t...
We examine some peculiarities of the subset of lattice preserving elements in a pseudo-Euclidean gro...
. We characterize discrete groups \Gamma ae GL(n;R) which act properly discontinuously on the homoge...
Abels H, Margulis GA, Soifer GA. Groupes proprement discontinus de transformations affines avec part...
A semigroup of sets is a family of sets closed under finite unions. This thesis focuses on the searc...
AbstractLet (T,+) be a Hausdorff semitopological semigroup, S be a dense subsemigroup of T and e be ...
As with groups, one can study the left regular representation of a semigroup. If one considers such...
Using a variant of Schreier's Theorem, and the theory of Green's relations, we show how to reduce th...
In this paper we describe a portion of the subsemigroup lattice of the full transformation semigroup...
AbstractThe notion of regularity for semigroups is studied, and it is shown that an unambiguous semi...
Abels H, Manoussos A. Linear semigroups with coarsely dense orbits. Israel Journal of Mathematics. 2...
The partial automorphism monoid of an inverse semigroup is an inverse monoid consisting of all isomo...
Abstract. Consider a finite set of Euclidean motions and ask what kind of conditions are necessary f...
AbstractLet Rn be a Euclidean space and let S be a Euclidean semigroup, i.e., a subsemigroup of the ...
A well known classical theorem due to Bieberbach says that every discrete group Γ of isometries of t...
Let H be a closed subgroup of a Lie group G. The subject of this expository paper is roughly about t...
We examine some peculiarities of the subset of lattice preserving elements in a pseudo-Euclidean gro...
. We characterize discrete groups \Gamma ae GL(n;R) which act properly discontinuously on the homoge...
Abels H, Margulis GA, Soifer GA. Groupes proprement discontinus de transformations affines avec part...
A semigroup of sets is a family of sets closed under finite unions. This thesis focuses on the searc...
AbstractLet (T,+) be a Hausdorff semitopological semigroup, S be a dense subsemigroup of T and e be ...
As with groups, one can study the left regular representation of a semigroup. If one considers such...
Using a variant of Schreier's Theorem, and the theory of Green's relations, we show how to reduce th...
In this paper we describe a portion of the subsemigroup lattice of the full transformation semigroup...
AbstractThe notion of regularity for semigroups is studied, and it is shown that an unambiguous semi...
Abels H, Manoussos A. Linear semigroups with coarsely dense orbits. Israel Journal of Mathematics. 2...
The partial automorphism monoid of an inverse semigroup is an inverse monoid consisting of all isomo...
Abstract. Consider a finite set of Euclidean motions and ask what kind of conditions are necessary f...