AbstractWe prove that any C2 complete, orientable, connected, stable area-stationary surface in the sub-Riemannian Heisenberg group H1 is either a Euclidean plane or congruent to the hyperbolic paraboloid t=xy
In the Heisenberg group framework, we obtain a geometric inequality for stable solutions of \u394\u2...
Suppose G is an almost simple group containing a subgroup isomorphic to the three-dimensional intege...
Abstract. For the standard three-dimensional Heisenberg group H and subgroup N = {(0, y, z)} of H, w...
Abstract. We consider area-stationary surfaces, perhaps with a volume con-straint, in the Heisenberg...
AbstractWe consider area-stationary surfaces, perhaps with a volume constraint, in the Heisenberg gr...
e study the classification of area-stationary and stable C2 regular surfaces in the space of the rig...
We prove that, in general, H-regular surfaces in the Heisenberg group H1 are not bi-Lipschitz equiva...
Abstract. We formulate the isoperimetric problem for the class of C2 smooth cylindrically symmetric ...
none3noneB. Franchi; R. Serapioni; F. Serra CassanoB. Franchi; R. Serapioni; F. Serra Cassan
AbstractWe describe intrinsically regular submanifolds in Heisenberg groups Hn. Low dimensional and ...
We prove that, in general, H-regular surfaces in the Heisenberg group H1 are not bi-Lipschitz equiva...
We study area-stationary surfaces in the space $\mathbf{L}(\mathbf{H}^3)$ of oriented geodesics of h...
The book is devoted to the study of submanifolds in the setting of Carnot groups equipped with a sub...
Abstract. In this article we generalize the notion of constant angle surfaces in S2 × R and H2×R to ...
In this paper we study intrinsic regular submanifolds of \(\mathbf{H}^n\) of low codimension in rela...
In the Heisenberg group framework, we obtain a geometric inequality for stable solutions of \u394\u2...
Suppose G is an almost simple group containing a subgroup isomorphic to the three-dimensional intege...
Abstract. For the standard three-dimensional Heisenberg group H and subgroup N = {(0, y, z)} of H, w...
Abstract. We consider area-stationary surfaces, perhaps with a volume con-straint, in the Heisenberg...
AbstractWe consider area-stationary surfaces, perhaps with a volume constraint, in the Heisenberg gr...
e study the classification of area-stationary and stable C2 regular surfaces in the space of the rig...
We prove that, in general, H-regular surfaces in the Heisenberg group H1 are not bi-Lipschitz equiva...
Abstract. We formulate the isoperimetric problem for the class of C2 smooth cylindrically symmetric ...
none3noneB. Franchi; R. Serapioni; F. Serra CassanoB. Franchi; R. Serapioni; F. Serra Cassan
AbstractWe describe intrinsically regular submanifolds in Heisenberg groups Hn. Low dimensional and ...
We prove that, in general, H-regular surfaces in the Heisenberg group H1 are not bi-Lipschitz equiva...
We study area-stationary surfaces in the space $\mathbf{L}(\mathbf{H}^3)$ of oriented geodesics of h...
The book is devoted to the study of submanifolds in the setting of Carnot groups equipped with a sub...
Abstract. In this article we generalize the notion of constant angle surfaces in S2 × R and H2×R to ...
In this paper we study intrinsic regular submanifolds of \(\mathbf{H}^n\) of low codimension in rela...
In the Heisenberg group framework, we obtain a geometric inequality for stable solutions of \u394\u2...
Suppose G is an almost simple group containing a subgroup isomorphic to the three-dimensional intege...
Abstract. For the standard three-dimensional Heisenberg group H and subgroup N = {(0, y, z)} of H, w...