AbstractWe discuss the computational complexity of context-free languages, concentrating on two well-known structural properties—immunity and pseudorandomness. An infinite language is REG-immune (resp., CFL-immune) if it contains no infinite subset that is a regular (resp., context-free) language. We prove that (i) there is a context-free REG-immune language outside REG/n and (ii) there is a REG-bi-immune language that can be computed deterministically using logarithmic space. We also show that (iii) there is a CFL-simple set, where a CFL-simple language is an infinite context-free language whose complement is CFL-immune. Similar to the REG-immunity, a REG-primeimmune language has no polynomially dense subsets that are also regular. We furt...