AbstractMore than twenty years ago, Manickam, Miklós, and Singhi conjectured that for any integers n, k satisfying n⩾4k, every set of n real numbers with nonnegative sum has at least (n−1k−1) k-element subsets whose sum is also nonnegative. In this paper we discuss the connection of this problem with matchings and fractional covers of hypergraphs, and with the question of estimating the probability that the sum of nonnegative independent random variables exceeds its expectation by a given amount. Using these connections together with some probabilistic techniques, we verify the conjecture for n⩾33k2. This substantially improves the best previously known exponential lower bound n⩾eckloglogk. In addition we prove a tight stability result show...