AbstractA finite poset X carries a natural structure of a topological space. Fix a field k, and denote by Db(X) the bounded derived category of sheaves of finite dimensional k-vector spaces over X. Two posets X and Y are said to be derived equivalent if Db(X) and Db(Y) are equivalent as triangulated categories.We give explicit combinatorial properties of X which are invariant under derived equivalence; among them are the number of points, the Z-congruency class of the incidence matrix, and the Betti numbers. We also show that taking opposites and products preserves derived equivalence.For any closed subset Y⊆X, we construct a strongly exceptional collection in Db(X) and use it to show an equivalence Db(X)≃Db(A) for a finite dimensional alge...