AbstractIn this paper we investigate the parallelization of two modular algorithms. In fact, we consider the modular computation of Gröbner bases (resp. standard bases) and the modular computation of the associated primes of a zero-dimensional ideal and describe their parallel implementation in Singular. Our modular algorithms for solving problems over Q mainly consist of three parts: solving the problem modulo p for several primes p, lifting the result to Q by applying the Chinese remainder algorithm (resp. rational reconstruction), and verification. Arnold proved using the Hilbert function that the verification part in the modular algorithm for computing Gröbner bases can be simplified for homogeneous ideals (cf. Arnold, 2003). The idea o...