AbstractThe goal of the present paper is to perform a comprehensive study of the covariance structures in balanced linear models containing random factors which are invariant with respect to marginal permutations of the random factors. We shall focus on model formulation and interpretation rather than the estimation of parameters. It is proven that permutation invariance implies a specific structure for the covariance matrices. Useful results are obtained for the spectra of permutation invariant covariance matrices. In particular, the reparameterization of random effects, i.e., imposing certain constraints, will be considered. There are many possibilities to choose reparameterization constraints in a linear model, however not every reparame...