AbstractConsider ergodic orthogonal polynomials on the unit circle whose Verblunsky coefficients are given by αn(ω)=λV(Tnω), where T is an expanding map of the circle and V is a C1 function. Following the formalism of [Jean Bourgain, Wilhelm Schlag, Anderson localization for Schrödinger operators on Z with strongly mixing potentials, Comm. Math. Phys. 215 (2000) 143–175; Victor Chulaevsky, Thomas Spencer, Positive Lyapunov exponents for a class of deterministic potentials, Comm. Math. Phys. 168 (1995) 455–466], we show that the Lyapunov exponent γ(z) obeys a nice asymptotic expression for λ>0 small and z∈∂D∖{±1}. In particular, this yields sufficient conditions for the Lyapunov exponent to be positive. Moreover, we also prove large deviatio...
Dans le cadre de cette thèse, nous nous intéressons à ”l’exposant de Lyapu-nov” pour deux modèles en...
Lyapunov exponents describe the asymptotic behavior of the singular values of large products of rand...
AbstractWe exhibit examples of almost periodic Verblunsky coefficients for which Herman’s subharmoni...
AbstractConsider ergodic orthogonal polynomials on the unit circle whose Verblunsky coefficients are...
The discrete Schrodinger equation describes the behavior of a 1-dimensional quantum particle in a di...
L'objectif de cette thèse est de traiter de deux aspects différents de la théorie de l'exposant de L...
In this article, we study the Lyapunov exponent of discrete analytic Jacobi operator with a family ...
We show that discrete one-dimensional Schrödinger operators on the half-line with ergodic potentials...
Abstract. We consider an m-dimensional analytic cocycle T × Rm 3 (x, ~ψ) 7 → (x+ ω,A(x) · ~ψ) ∈ T ...
Abstract. In this Note, we consider 1D lattice Schrödinger operators with deterministic strongly mi...
A variant of multiscale analysis for ergodic Schrödinger operators is developed. This enables us to ...
Abstract. We consider SL(2,R)-valued cocycles over rotations of the circle and prove that they are l...
We study the one-dimensional discrete Schrödinger operator with the skew-shift potential 2λ cos (2π(...
The Lyapunov exponents serve as numerical characteristics of dynamical systems, which measure possib...
Consiglio Nazionale delle Ricerche (CNR). Biblioteca Centrale / CNR - Consiglio Nazionale delle Rich...
Dans le cadre de cette thèse, nous nous intéressons à ”l’exposant de Lyapu-nov” pour deux modèles en...
Lyapunov exponents describe the asymptotic behavior of the singular values of large products of rand...
AbstractWe exhibit examples of almost periodic Verblunsky coefficients for which Herman’s subharmoni...
AbstractConsider ergodic orthogonal polynomials on the unit circle whose Verblunsky coefficients are...
The discrete Schrodinger equation describes the behavior of a 1-dimensional quantum particle in a di...
L'objectif de cette thèse est de traiter de deux aspects différents de la théorie de l'exposant de L...
In this article, we study the Lyapunov exponent of discrete analytic Jacobi operator with a family ...
We show that discrete one-dimensional Schrödinger operators on the half-line with ergodic potentials...
Abstract. We consider an m-dimensional analytic cocycle T × Rm 3 (x, ~ψ) 7 → (x+ ω,A(x) · ~ψ) ∈ T ...
Abstract. In this Note, we consider 1D lattice Schrödinger operators with deterministic strongly mi...
A variant of multiscale analysis for ergodic Schrödinger operators is developed. This enables us to ...
Abstract. We consider SL(2,R)-valued cocycles over rotations of the circle and prove that they are l...
We study the one-dimensional discrete Schrödinger operator with the skew-shift potential 2λ cos (2π(...
The Lyapunov exponents serve as numerical characteristics of dynamical systems, which measure possib...
Consiglio Nazionale delle Ricerche (CNR). Biblioteca Centrale / CNR - Consiglio Nazionale delle Rich...
Dans le cadre de cette thèse, nous nous intéressons à ”l’exposant de Lyapu-nov” pour deux modèles en...
Lyapunov exponents describe the asymptotic behavior of the singular values of large products of rand...
AbstractWe exhibit examples of almost periodic Verblunsky coefficients for which Herman’s subharmoni...