AbstractWe deal with distance matrices of real (this means, not necessarily integer) numbers. It is known that a distance matrix D of order n is tree-realizable if and only if all its principal submatrices of order 4 are tree-realizable. We discuss bounds for the number, denoted Qi(D), of non-tree-realizable principal submatrices of order i ⩾ 4 of a non-tree-realizable distance matrix D of order n⩾i, and we construct some distance matrices which meet extremal conditions on Qi(D). Our starting point is a proof that a non-tree-realizable distance matrix of order 5 has at least two non-tree-realizable principal submatrices of order 4. Optimal realizations (by graphs with circuits) of distance matrices which are not tree-realizable are not yet ...