AbstractIn this paper, using proximal-point mapping technique of P-η-accretive mapping and the property of the fixed-point set of set-valued contractive mappings, we study the behavior and sensitivity analysis of the solution set of a parametric generalized implicit quasi-variational-like inclusion involving P-η-accretive mapping in real uniformly smooth Banach space. Further, under suitable conditions, we discuss the Lipschitz continuity of the solution set with respect to the parameter. The technique and results presented in this paper can be viewed as extension of the techniques and corresponding results given in [R.P. Agarwal, Y.-J. Cho, N.-J. Huang, Sensitivity analysis for strongly nonlinear quasi-variational inclusions, Appl. Math. L...
Using the concept of p-η-proximal mapping, we study the existence and sensitivity analysis of sol...
We consider a new system for generalized variational inclusions in Hilbert spaces and define an iter...
AbstractIn this paper, we develop the sensitivity analysis for quasi variational inclusions by using...
AbstractIn this paper, using proximal-point mapping technique of P-η-accretive mapping and the prope...
AbstractIn this paper, by using a resolvent operator technique of maximal monotone mappings and the ...
AbstractIn this paper, by using a resolvent operator technique of maximal monotone mappings and the ...
AbstractA new class of parametric completely generalized mixed implicit quasi-variational inclusions...
AbstractIn this paper we introduce a new class of parametric completely generalized nonlinear implic...
AbstractIn this paper, we use the implicit resolvent operator technique to study the sensitivity ana...
AbstractIt is well known that the implicit resolvent equations are equivalent to the quasivariationa...
AbstractThis paper introduces a new class of generalized nonlinear quasi-variational inclusions invo...
We introduce and study a new class of generalized nonlinear implicit quasivariational inclusions in...
We introduce and study a new class of generalized nonlinear implicit quasivariational inclusions inv...
Using the concept of P-η-proximal mapping, we study the existence and sensitivity anal-ysis of solut...
A new class of system of generalized parametric nonlinear quasivariational inequalities involving va...
Using the concept of p-η-proximal mapping, we study the existence and sensitivity analysis of sol...
We consider a new system for generalized variational inclusions in Hilbert spaces and define an iter...
AbstractIn this paper, we develop the sensitivity analysis for quasi variational inclusions by using...
AbstractIn this paper, using proximal-point mapping technique of P-η-accretive mapping and the prope...
AbstractIn this paper, by using a resolvent operator technique of maximal monotone mappings and the ...
AbstractIn this paper, by using a resolvent operator technique of maximal monotone mappings and the ...
AbstractA new class of parametric completely generalized mixed implicit quasi-variational inclusions...
AbstractIn this paper we introduce a new class of parametric completely generalized nonlinear implic...
AbstractIn this paper, we use the implicit resolvent operator technique to study the sensitivity ana...
AbstractIt is well known that the implicit resolvent equations are equivalent to the quasivariationa...
AbstractThis paper introduces a new class of generalized nonlinear quasi-variational inclusions invo...
We introduce and study a new class of generalized nonlinear implicit quasivariational inclusions in...
We introduce and study a new class of generalized nonlinear implicit quasivariational inclusions inv...
Using the concept of P-η-proximal mapping, we study the existence and sensitivity anal-ysis of solut...
A new class of system of generalized parametric nonlinear quasivariational inequalities involving va...
Using the concept of p-η-proximal mapping, we study the existence and sensitivity analysis of sol...
We consider a new system for generalized variational inclusions in Hilbert spaces and define an iter...
AbstractIn this paper, we develop the sensitivity analysis for quasi variational inclusions by using...