AbstractLet (ks) denote the set of all k-element-subsets of a finite set S. A k-simplical matroid on a subset E of (ks) is a binary matroid the circuit of which are simplicial complexes {X1,…Xm} ⊆ E with boundary 0 (mod 2). The k-simplical matroid on (ks) is called the full simplicial matroid Gk(S). The polygon matroid on the edges of a finite graph is 2-simplicial. Polygon-matroids and their duals are regular. The dual of Gk(S) is Gn−k(S) if the cardinnlity of S is n. More details on simplicial matroids can be found in [3, Chapter 6] and also in [4, pp. 180–181].Welsh asked if every simplicial matroid is regular. We prove that this is not the case, for all full k-simplicial matroids Gk(S) with 3⩽k⩽n−3 are non-regular (n is the cardinality ...