AbstractWe consider a generalization of the classical model of collective risk theory. It is assumed that the cumulative income of a firm is given by a process X with stationary independent increments, and that interest is earned continuously on the firm's assets. Then Y(t), the assets of the firm at time t, can be represented by a simple path-wise integral with respect to the income process X. A general characterization is obtained for the probability r(y) that assets will ever fall to zero when the initial asset level is y (the probability of ruin). From this we obtain a general upper bound for r(y), a general solution for the case where X has no negative jumps, and explicit formulas for three particular examples.In addition, an approxima...