AbstractWe obtain a unform strong approximation for the distribution of a Nadaraya-Watson kernel estimator of a regression function. The approximation is obtained for general multivariate explanatory variables under an algebraic moment condition on the errors. A stronger rate of convergene result for the normal approximation is obtained at the expense of stronger moment conditions. We use the strong approximation results to derive a normal approximation to the distribution of the fitted values from the model
31 pagesIn this paper, we prove large deviations principle for the Nadaraya-Watson estimator and for...
The Nadaraya-Watson estimator is certainly the most popular nonparametric regression estimator. The ...
Let (X, Y) be an d--valued regression pair, whereXhas a density andYis bounded. Ifni.i.d. samples a...
AbstractWe obtain a unform strong approximation for the distribution of a Nadaraya-Watson kernel est...
The function approximation problem is to find the appropriate relationship between a dependent and i...
Version préliminaire (2008) d'un travail publié sous forme définitive (2009)International audienceIn...
We present an estimate of the accuracy of normal approximation for the distribution of a ratio of su...
We present an estimate of the accuracy of normal approximation for the distribution of a ratio of su...
Version préliminaire (2008) d'un travail publié sous forme définitive (2009)International audienceIn...
This paper considers a nonparametric regression model for cross-sectional data in the presence of co...
This paper considers a nonparametric regression model for cross-sectional data in the presence of co...
This paper considers a nonparametric regression model for cross-sectional data in the presence of co...
This paper considers a nonparametric regression model for cross-sectional data in the presence of co...
Nonparametric regression estimation, kernel estimate of Nadaraya and Watson, square integrability, s...
31 pagesIn this paper, we prove large deviations principle for the Nadaraya-Watson estimator and for...
31 pagesIn this paper, we prove large deviations principle for the Nadaraya-Watson estimator and for...
The Nadaraya-Watson estimator is certainly the most popular nonparametric regression estimator. The ...
Let (X, Y) be an d--valued regression pair, whereXhas a density andYis bounded. Ifni.i.d. samples a...
AbstractWe obtain a unform strong approximation for the distribution of a Nadaraya-Watson kernel est...
The function approximation problem is to find the appropriate relationship between a dependent and i...
Version préliminaire (2008) d'un travail publié sous forme définitive (2009)International audienceIn...
We present an estimate of the accuracy of normal approximation for the distribution of a ratio of su...
We present an estimate of the accuracy of normal approximation for the distribution of a ratio of su...
Version préliminaire (2008) d'un travail publié sous forme définitive (2009)International audienceIn...
This paper considers a nonparametric regression model for cross-sectional data in the presence of co...
This paper considers a nonparametric regression model for cross-sectional data in the presence of co...
This paper considers a nonparametric regression model for cross-sectional data in the presence of co...
This paper considers a nonparametric regression model for cross-sectional data in the presence of co...
Nonparametric regression estimation, kernel estimate of Nadaraya and Watson, square integrability, s...
31 pagesIn this paper, we prove large deviations principle for the Nadaraya-Watson estimator and for...
31 pagesIn this paper, we prove large deviations principle for the Nadaraya-Watson estimator and for...
The Nadaraya-Watson estimator is certainly the most popular nonparametric regression estimator. The ...
Let (X, Y) be an d--valued regression pair, whereXhas a density andYis bounded. Ifni.i.d. samples a...