AbstractLet B denote the unit ball in Cn with boundary S and let σ(v) be the standard normalized measure on S(B). For fixed 1 ≤ p ≤ ∞, R≥ 1 let BHp(BR) (BAp(BR)) denote the unit ball of the Hardy space Hp (resp. the Bergman space Ap) in BR ≔ RB and for l ∈ N let HR(l, p, n) (resp. AR(l, p, n)) denote the class of those functions which have the lth radial derivative belonging to BHp(BR) (BAp(BR)) for l = 0, let HR(0, p, n) ≔ BHp(BR) (AR(0, p, n) ≔ BAp(BR)). The values of Kolmogorov, Gel′fand, and Bernstein and linear N-widths of classes HR(l, p, n) and AR(l, p, n) in the metrics Lp(σ) and Lp(v) (except for AR(l, p, n) in Lp(σ)) are found. For all 1≤ p, q ≤ ∞, R > 1 the asymptotic estimates of N-widths for classes HR(l, p, n) and AR(l, p, n) ...
AbstractLet Sd−1≔{(x1,…,xd)∈Rd:x21+···+x2d=1} be the unit sphere of the d-dimensional Euclidean spac...
We determine upper asymptotic estimates of Kolmogorov and linear $n$-widths of unit balls in Sobolev...
AbstractLet D be a bounded symmetric domain and Σ be the Shilov boundary of D. For λ∈W, the Wallach ...
AbstractLet B denote the unit ball in Cn with boundary S and let σ(v) be the standard normalized mea...
AbstractThe n-widths of the unit ball Ap of the Hardy space Hp in Lq( −1, 1) are determined asymptot...
AbstractThe n-widths of the unit ball Ap of the Hardy space Hp in Lq( −1, 1) are determined asymptot...
AbstractWe consider the classes of holomorphic functions whose radial derivative of order r lies in ...
AbstractWe consider the classes of holomorphic functions whose radial derivative of order r lies in ...
AbstractThe Kolmogorov n-widths dn, Gel'fand n-widths dn, and linear n-widths δn of the Hardy spaces...
AbstractLet E be a compact subset of the open unit disc Δ and let Hq be the Hardy space of analytic ...
AbstractWe study the Kolmogorov n-widths dn(BWp,μr,Lq,μ) and the linear n-widths δn(BWp,μr,Lq,μ) of ...
AbstractLet E be a closed subset of the open unit disk G={z:|z|<1}, and let μ be a positive Borel me...
AbstractOptimal estimates of Kolmogorov’s n-widths, linear n-widths and Gelfand’s n-widths of the we...
Orientador: Sergio Antonio TozoniDissertação (mestrado) - Universidade Estadual de Campinas, Institu...
AbstractConsider the Hardy-type operator T: Lp(a,b)→Lp(a,b),-∞⩽a<b⩽∞, which is defined by(Tf)(x)=v(x...
AbstractLet Sd−1≔{(x1,…,xd)∈Rd:x21+···+x2d=1} be the unit sphere of the d-dimensional Euclidean spac...
We determine upper asymptotic estimates of Kolmogorov and linear $n$-widths of unit balls in Sobolev...
AbstractLet D be a bounded symmetric domain and Σ be the Shilov boundary of D. For λ∈W, the Wallach ...
AbstractLet B denote the unit ball in Cn with boundary S and let σ(v) be the standard normalized mea...
AbstractThe n-widths of the unit ball Ap of the Hardy space Hp in Lq( −1, 1) are determined asymptot...
AbstractThe n-widths of the unit ball Ap of the Hardy space Hp in Lq( −1, 1) are determined asymptot...
AbstractWe consider the classes of holomorphic functions whose radial derivative of order r lies in ...
AbstractWe consider the classes of holomorphic functions whose radial derivative of order r lies in ...
AbstractThe Kolmogorov n-widths dn, Gel'fand n-widths dn, and linear n-widths δn of the Hardy spaces...
AbstractLet E be a compact subset of the open unit disc Δ and let Hq be the Hardy space of analytic ...
AbstractWe study the Kolmogorov n-widths dn(BWp,μr,Lq,μ) and the linear n-widths δn(BWp,μr,Lq,μ) of ...
AbstractLet E be a closed subset of the open unit disk G={z:|z|<1}, and let μ be a positive Borel me...
AbstractOptimal estimates of Kolmogorov’s n-widths, linear n-widths and Gelfand’s n-widths of the we...
Orientador: Sergio Antonio TozoniDissertação (mestrado) - Universidade Estadual de Campinas, Institu...
AbstractConsider the Hardy-type operator T: Lp(a,b)→Lp(a,b),-∞⩽a<b⩽∞, which is defined by(Tf)(x)=v(x...
AbstractLet Sd−1≔{(x1,…,xd)∈Rd:x21+···+x2d=1} be the unit sphere of the d-dimensional Euclidean spac...
We determine upper asymptotic estimates of Kolmogorov and linear $n$-widths of unit balls in Sobolev...
AbstractLet D be a bounded symmetric domain and Σ be the Shilov boundary of D. For λ∈W, the Wallach ...