AbstractIn earlier Letters, we adopted a complex approach to quantum processes in the formation and evaporation of black holes. Taking Feynman's +iε prescription, rather than one of the more usual approaches, we calculated the quantum amplitude (not just the probability density) for final weak-field configurations following gravitational collapse to a black hole with subsequent evaporation. What we have done is to find quantum amplitudes relating to a pure state at late times following black-hole matter collapse. Such pure states are then shown to be susceptible to a description in terms of coherent and squeezed states—in practice, this description is not very different from that for the well-known highly-squeezed final state of the relic r...