AbstractFor a Poisson high-density system of independent motions in Rd we consider the corresponding density process as the limit of fluctuations or, equivalently, the limit of the “total charge” if each particle is equipped with a random charge. We prove that under fairly general assumptions on the motions and on the intensity measure of the system, the self-intersection local time (SILT) of the density process can be expressed by means of intersections of pairs of evolving particles. This result helps to understand the interpretation and meaning of SILT. As an example, we discuss the cases of symmetric α-stable motions and fractional Brownian motions in detail
We establish new fractal properties for superprocess densities. Consider the density of super-Brown...
1 Introduction and statement of the results Self intersection local time of Brownian motion have bee...
Dawson-Watanabe superprocesses are stochastic models for populations undergoing spatial migration a...
AbstractFor a Poisson high-density system of independent motions in Rd we consider the corresponding...
AbstractWe study existence and continuity of self-intersection local time (SILT) for a Gaussian S′(R...
AbstractWe prove functional limits theorems for the occupation time process of a system of particles...
In this paper we contribute to the investigation of the fractal nature of the intersection local tim...
We present a new approach to treat the problem of self intersection local time of a d-dimensional Fr...
AbstractIn this paper we develop a criterion for existence or non-existence of self-intersection loc...
International audienceWe consider a particle diffusing outside a compact planar set and investigate ...
In this paper we develop a criterion for existence or non-existence of self-intersection local time ...
Thesis (Ph.D.)--University of Washington, 2016-06The thesis concerns asymptotic behavior of particle...
distribution-valued process, sub-fractional Brownian motion We consider particle systems in R with i...
Several stochastic processes related to transient Lévy processes with potential densities u(x,y)=u(y...
AbstractThe dynamics of tagged particles in a class of models which can exhibit nontrivial scaling b...
We establish new fractal properties for superprocess densities. Consider the density of super-Brown...
1 Introduction and statement of the results Self intersection local time of Brownian motion have bee...
Dawson-Watanabe superprocesses are stochastic models for populations undergoing spatial migration a...
AbstractFor a Poisson high-density system of independent motions in Rd we consider the corresponding...
AbstractWe study existence and continuity of self-intersection local time (SILT) for a Gaussian S′(R...
AbstractWe prove functional limits theorems for the occupation time process of a system of particles...
In this paper we contribute to the investigation of the fractal nature of the intersection local tim...
We present a new approach to treat the problem of self intersection local time of a d-dimensional Fr...
AbstractIn this paper we develop a criterion for existence or non-existence of self-intersection loc...
International audienceWe consider a particle diffusing outside a compact planar set and investigate ...
In this paper we develop a criterion for existence or non-existence of self-intersection local time ...
Thesis (Ph.D.)--University of Washington, 2016-06The thesis concerns asymptotic behavior of particle...
distribution-valued process, sub-fractional Brownian motion We consider particle systems in R with i...
Several stochastic processes related to transient Lévy processes with potential densities u(x,y)=u(y...
AbstractThe dynamics of tagged particles in a class of models which can exhibit nontrivial scaling b...
We establish new fractal properties for superprocess densities. Consider the density of super-Brown...
1 Introduction and statement of the results Self intersection local time of Brownian motion have bee...
Dawson-Watanabe superprocesses are stochastic models for populations undergoing spatial migration a...