AbstractIn sea urchin embryos, specification of the secondary (oral–aboral) axis occurs via nodal, expression of which is entirely zygotic and localized to prospective oral ectoderm at blastula stage. The initial source of this spatial anisotropy is not known. Previous studies have shown that oral–aboral (OA) polarity correlates with a mitochondrial gradient, and that nodal activity is dependent both on mitochondrial respiration and p38 stress-activated protein kinase. Here we show that the spatial pattern of nodal activity also correlates with the mitochondrial gradient, and that the latter correlates with inhomogeneous levels of intracellular reactive oxygen species. To test whether mitochondrial H2O2 functions as a redox signal to activa...