AbstractIn this short note, we derive an expression for the asymptotic covariance matrix of the univariate partial least squares (PLS) estimator. In contrast to M.C. Denham [J. Chemometrics 11 (1997) 39], who provided a locally linear approximation based on a recursive definition of the estimator, we derive a more compact expression for the asymptotic covariance matrix by combining a standard convergence result with matrix differential calculus, in particular the approach of J.R. Magnus and H. Neudecker [Matrix Differential Calculus with Applications in Statistics and Econometrics, revised ed., Wiley, Chichester, UK, 1991]. We also describe some theoretical and practical aspects of calculating the asymptotic covariance matrix, and illustrat...
AbstractThe paper is concerned with estimating multivariate linear and autoregressive models using a...
AbstractThe asymptotic covariance matrix of the sample correlation matrix is derived in matrix form ...
This paper deals with the problem of estimating the covariance matrix of the least-squares regressio...
AbstractIn this short note, we derive an expression for the asymptotic covariance matrix of the univ...
This paper presents some results about the asymptotic behaviour of the estimate of a regression mod...
This paper presents some results about the asymptotic behaviour of the estimate of a regression mod...
This paper presents some results about the asymptotic behaviour of the estimate of a regression mod...
We give a straightforward condition sufficient for determining the minimum asymptotic variance estim...
Im Hauptteil dieser Arbeit beschäftigen wir uns mit dem asymptotischen Verhalten linearer Spektralst...
Im Hauptteil dieser Arbeit beschäftigen wir uns mit dem asymptotischen Verhalten linearer Spektralst...
This paper presents some results about the asymptotic behaviour of the estimate of a regression mod...
This paper presents some results about the asymptotic behaviour of the estimate of a regression mod...
We give new simple general expressions for the asymptotic covariance of the estimated system paramet...
SIGLEAvailable from British Library Document Supply Centre- DSC:3597.76(BU-DE-DP--88/218) / BLDSC - ...
We report a matrix expression for the covariance matrix of MLEs of factor loadings in factor analysi...
AbstractThe paper is concerned with estimating multivariate linear and autoregressive models using a...
AbstractThe asymptotic covariance matrix of the sample correlation matrix is derived in matrix form ...
This paper deals with the problem of estimating the covariance matrix of the least-squares regressio...
AbstractIn this short note, we derive an expression for the asymptotic covariance matrix of the univ...
This paper presents some results about the asymptotic behaviour of the estimate of a regression mod...
This paper presents some results about the asymptotic behaviour of the estimate of a regression mod...
This paper presents some results about the asymptotic behaviour of the estimate of a regression mod...
We give a straightforward condition sufficient for determining the minimum asymptotic variance estim...
Im Hauptteil dieser Arbeit beschäftigen wir uns mit dem asymptotischen Verhalten linearer Spektralst...
Im Hauptteil dieser Arbeit beschäftigen wir uns mit dem asymptotischen Verhalten linearer Spektralst...
This paper presents some results about the asymptotic behaviour of the estimate of a regression mod...
This paper presents some results about the asymptotic behaviour of the estimate of a regression mod...
We give new simple general expressions for the asymptotic covariance of the estimated system paramet...
SIGLEAvailable from British Library Document Supply Centre- DSC:3597.76(BU-DE-DP--88/218) / BLDSC - ...
We report a matrix expression for the covariance matrix of MLEs of factor loadings in factor analysi...
AbstractThe paper is concerned with estimating multivariate linear and autoregressive models using a...
AbstractThe asymptotic covariance matrix of the sample correlation matrix is derived in matrix form ...
This paper deals with the problem of estimating the covariance matrix of the least-squares regressio...