AbstractLet k be a field of characteristic p>0. Call a finite group G a poco group over k if any finitely generated cohomological Mackey functor for G over k has polynomial growth. The main result of this paper is that G is a poco group over k if and only if the Sylow p-subgroups of G are cyclic, when p>2, or have sectional rank at most 2, when p=2.A major step in the proof is the case where G is an elementary abelian p-group. In particular, when p=2, all the extension groups between simple functors can be determined completely, using a presentation of the graded algebra of self extensions of the simple functor S1G, by explicit generators and relations