AbstractWe give an explicit combinatorial product formula for the parabolic Kazhdan–Lusztig polynomials of the tight quotients of the symmetric group. This formula shows that these polynomials are always either zero or a monic power of q and implies the main result in [F. Brenti, Kazhdan–Lusztig and R-polynomials, Youngʼs lattice, and Dyck partitions, Pacific J. Math. 207 (2002) 257–286] on the parabolic Kazhdan–Lusztig polynomials of the maximal quotients. The formula depends on a new class of superpartitions