AbstractThe method of deriving Liouville's theorem for subharmonic functions in the plane from the corresponding Hadamard three-circles theorem is extended to a more general and abstract setting. Two extensions of Liouville's theorem for vector-valued holomorphic functions of several complex variables are also mentioned
We prove different Liouville theorems for several classes of quasilinear elliptic systems and applic...
Abstract We study the mini-superspace semiclassical limit of the boundary three-point function in th...
The classical Liouville theorem states that a bounded harmonic function on allofRnmust be constant. ...
AbstractThe method of deriving Liouville's theorem for subharmonic functions in the plane from the c...
Abstract: Correlation functions in Liouville theory are meromorphic functions of the Liouville momen...
In this paper we presents some Liouville type theorems for solutions of differential inequalities in...
By using the moving plane method combined with integral inequalities and Hardy's inequality, so...
证明复变函数中的刘维尔定理在调和函数中的一种推广.An extension form of Liouville's theorem about analytic functions f...
We extend the well-known Denjoy-Ahlfors theorem about the number of different asymptotic tracts of a...
Liouville's theorem states that every bounded entire function is a constant function. This is among ...
In this paper we present some Liouville type theorems for solutions of differential inequalities inv...
The principle content of this thesis could be divided roughly into three parts: a) to establish some...
AbstractWe give a very simple function theoretic proof to a Liouville type theorem for harmonic func...
We give some Liouville type theorems of L p harmonic (resp. subharmonic, superharmonic) func...
We show that the parabolicity of a manifold is equivalent to the validity of the `divergence theorem...
We prove different Liouville theorems for several classes of quasilinear elliptic systems and applic...
Abstract We study the mini-superspace semiclassical limit of the boundary three-point function in th...
The classical Liouville theorem states that a bounded harmonic function on allofRnmust be constant. ...
AbstractThe method of deriving Liouville's theorem for subharmonic functions in the plane from the c...
Abstract: Correlation functions in Liouville theory are meromorphic functions of the Liouville momen...
In this paper we presents some Liouville type theorems for solutions of differential inequalities in...
By using the moving plane method combined with integral inequalities and Hardy's inequality, so...
证明复变函数中的刘维尔定理在调和函数中的一种推广.An extension form of Liouville's theorem about analytic functions f...
We extend the well-known Denjoy-Ahlfors theorem about the number of different asymptotic tracts of a...
Liouville's theorem states that every bounded entire function is a constant function. This is among ...
In this paper we present some Liouville type theorems for solutions of differential inequalities inv...
The principle content of this thesis could be divided roughly into three parts: a) to establish some...
AbstractWe give a very simple function theoretic proof to a Liouville type theorem for harmonic func...
We give some Liouville type theorems of L p harmonic (resp. subharmonic, superharmonic) func...
We show that the parabolicity of a manifold is equivalent to the validity of the `divergence theorem...
We prove different Liouville theorems for several classes of quasilinear elliptic systems and applic...
Abstract We study the mini-superspace semiclassical limit of the boundary three-point function in th...
The classical Liouville theorem states that a bounded harmonic function on allofRnmust be constant. ...