AbstractThe classification of all self-dual codes over Z4 of length up to 15 and Type II codes of length 16 is known. In this note, we give a method to classify Type IV self-dual codes over Z4. As an application, we present the classification of Type IV self-dual codes of length 16. There are exactly 11 inequivalent Type IV self-dual Z4-codes of length 16
AbstractAccording to V. Pless et al. (1997, J. Combin. Theory Ser. A78, 32–50) all Z4 codes of type ...
AbstractThis paper classifies all cyclic codes over Z4 of length 2n,n odd. Descriptions are given in...
AbstractIn this paper, we determine the dimensions of the residue codes of extremal Type II Z4-codes...
AbstractThe classification of all self-dual codes over Z4 of length up to 15 and Type II codes of le...
AbstractType II Z4-codes are a remarkable class of self-dual Z4-codes. A Type II Z4-code of length n...
AbstractRecently, Type IV self-dual codes over rings of order 4 have been introduced as self-dual co...
This study aims to give a characterization of Type II codes over Z4 x Z4 with respect to some select...
AbstractRecently, Type IV self-dual codes over rings of order 4 have been introduced as self-dual co...
AbstractWe show that there are 133 inequivalent Type II codes over Z4of length 16. We give the numbe...
AbstractThis article is a survey of the current status of the classification and enumeration of self...
AbstractIn this note, we investigate Type I codes over Z4 constructed from Hadamard matrices. As an ...
AbstractFornodd, theZ4cyclic code generated by 2 is self-dual. We call this a trivial cyclic self-du...
We determine the structure of cyclic codes over Z 4 for arbitrary even length giving the generator p...
AbstractA classification method of self-dual codes over Zm is given. If m=rs with relatively prime i...
Abstract. In this paper, we find all inequivalent classes of self-orthogonal codes over Zp2 of lengt...
AbstractAccording to V. Pless et al. (1997, J. Combin. Theory Ser. A78, 32–50) all Z4 codes of type ...
AbstractThis paper classifies all cyclic codes over Z4 of length 2n,n odd. Descriptions are given in...
AbstractIn this paper, we determine the dimensions of the residue codes of extremal Type II Z4-codes...
AbstractThe classification of all self-dual codes over Z4 of length up to 15 and Type II codes of le...
AbstractType II Z4-codes are a remarkable class of self-dual Z4-codes. A Type II Z4-code of length n...
AbstractRecently, Type IV self-dual codes over rings of order 4 have been introduced as self-dual co...
This study aims to give a characterization of Type II codes over Z4 x Z4 with respect to some select...
AbstractRecently, Type IV self-dual codes over rings of order 4 have been introduced as self-dual co...
AbstractWe show that there are 133 inequivalent Type II codes over Z4of length 16. We give the numbe...
AbstractThis article is a survey of the current status of the classification and enumeration of self...
AbstractIn this note, we investigate Type I codes over Z4 constructed from Hadamard matrices. As an ...
AbstractFornodd, theZ4cyclic code generated by 2 is self-dual. We call this a trivial cyclic self-du...
We determine the structure of cyclic codes over Z 4 for arbitrary even length giving the generator p...
AbstractA classification method of self-dual codes over Zm is given. If m=rs with relatively prime i...
Abstract. In this paper, we find all inequivalent classes of self-orthogonal codes over Zp2 of lengt...
AbstractAccording to V. Pless et al. (1997, J. Combin. Theory Ser. A78, 32–50) all Z4 codes of type ...
AbstractThis paper classifies all cyclic codes over Z4 of length 2n,n odd. Descriptions are given in...
AbstractIn this paper, we determine the dimensions of the residue codes of extremal Type II Z4-codes...