AbstractA biased graph Ω consists of a graph Γ and a class B of circles (simple, closed paths) in Γ, called balanced circles, such that no theta subgraph contains exactly two balanced circles. The bias matroid G(Ω) is a finitary matroid on the edge set E of Ω whose circuits are the balanced circles and the minimal connected edge sets of cyclomatic number two containing no balanced circle. We prove that these circuits define a matroid and we establish cryptomorphic definitions and other properties. Another finitary matroid on E, the lift matroid L(Ω), and its one-point extension the complete lift matroid L0(Ω), are obtained from the abstract matroid lift construction applied to the graphic matroid G(Γ) and the class B. The circuits of L(Ω) a...