AbstractBy expanding a function f∈Lp((-1,1),(1-s)α(1+s)βds) (1≤p<∞) in terms of the basis conjugate to the Jacobi polynomials, the associated generalized translation Tt and the generalized difference T˜t are introduced to define the smoothness of f, respectively, The related Lipschitz classes are characterized by the properties of the Poisson integral near to the boundary
We give a short proof of the jacobian criterion of formal smoothness using the Lichtenbaum-Schlessin...
We consider functions represented as trigonometric series with general monotone Fourier coefficients...
This article deals with the general linearization problem of Jacobi polynomials. We provide two appr...
AbstractFor expansion by Jacobi polynomials we relate smoothness given by appropriate K-functionals ...
AbstractWe obtain a characterization of local Besov spaces of functions on [-1,1] in terms of algebr...
In the study of differential equations on [ − 1,1] subject to linear homogeneous boundary conditions...
AbstractIn a recent paper Bray and Pinsky [1] estimated the growth of f̂(ξ), the Fourier transform o...
This research monograph concerns the Nevanlinna factorization of analytic functions smooth, in a sen...
In this paper, we are going to define a generalized Dini-Lipschitz class and give a characterization...
This paper investigates the smoothness behavior of the Poosson- and the conjugate Poisson integral o...
AbstractThe well-known identity which determines the jumps of a function of bounded variation by its...
In English: a characterization of the total variation TV (u,Ω) of the Jacobian determinant detDu is ...
While the direct and converse theorems of approximation theory enable us to characterize the smoothn...
AbstractUniform asymptotic properties of the classical Jacobi polynomials have been studied via vari...
We define Riesz transforms and conjugate Poisson integrals associated with multi-dimensional Jacobi ...
We give a short proof of the jacobian criterion of formal smoothness using the Lichtenbaum-Schlessin...
We consider functions represented as trigonometric series with general monotone Fourier coefficients...
This article deals with the general linearization problem of Jacobi polynomials. We provide two appr...
AbstractFor expansion by Jacobi polynomials we relate smoothness given by appropriate K-functionals ...
AbstractWe obtain a characterization of local Besov spaces of functions on [-1,1] in terms of algebr...
In the study of differential equations on [ − 1,1] subject to linear homogeneous boundary conditions...
AbstractIn a recent paper Bray and Pinsky [1] estimated the growth of f̂(ξ), the Fourier transform o...
This research monograph concerns the Nevanlinna factorization of analytic functions smooth, in a sen...
In this paper, we are going to define a generalized Dini-Lipschitz class and give a characterization...
This paper investigates the smoothness behavior of the Poosson- and the conjugate Poisson integral o...
AbstractThe well-known identity which determines the jumps of a function of bounded variation by its...
In English: a characterization of the total variation TV (u,Ω) of the Jacobian determinant detDu is ...
While the direct and converse theorems of approximation theory enable us to characterize the smoothn...
AbstractUniform asymptotic properties of the classical Jacobi polynomials have been studied via vari...
We define Riesz transforms and conjugate Poisson integrals associated with multi-dimensional Jacobi ...
We give a short proof of the jacobian criterion of formal smoothness using the Lichtenbaum-Schlessin...
We consider functions represented as trigonometric series with general monotone Fourier coefficients...
This article deals with the general linearization problem of Jacobi polynomials. We provide two appr...