AbstractIt is known that the chromatic polynomial and flow polynomial of a graph are two important evaluations of its Tutte polynomial, both of which contain much information of the graph. Much research is done on graphs determined entirely by their chromatic polynomials and Tutte polynomials, respectively. Oxley asked which classes of graphs or matroids are determined by their chromatic and flow polynomials together. In this paper, we found several classes of graphs with this property. We first study which graphic parameters are determined by the flow polynomials. Then we study flow-unique graphs. Finally, we show that several classes of graphs, ladders, Möbius ladders and squares of n-cycle are determined by their chromatic polynomials an...