AbstractThe symmetric M-matrix and symmetric M0-matrix completion problems are solved and results of Johnson and Smith [Linear Algebra Appl. 290 (1999) 193] are extended to solve the symmetric inverse M-matrix completion problem: (1)A pattern (i.e., a list of positions in an n×n matrix) has symmetric M-completion (i.e., every partial symmetric M-matrix specifying the pattern can be completed to a symmetric M-matrix) if and only if the principal subpattern R determined by its diagonal is permutation similar to a pattern that is block diagonal with each diagonal block complete, or, in graph theoretic terms, if and only if each component of the graph of R is a clique.(2)A pattern has symmetric M0-completion if and only if the pattern is permut...