AbstractThis paper discusses a class of linear semi-infinite programming problems with finite number of variables and infinitely many constraints over a compact metric space. The “adding constraint method” for solving linear semi-infinite programming problems is introduced in Section 2. The “perturbation method” for solving regular linear programming problems is introduced in Section 3. Based on these two methods, the “perturbation method” for solving linear semi-infinite programming problems is proposed with a proof for the convergence of the “perturbation algorithm”
A globally convergent algorithm is presented for the solution of a wide class of semi-infinite progr...
In this paper we present some semismooth Newton methods for solving the semi-infinite programming pr...
In this paper, the classical KKT, complementarity and Lagrangian saddle-point conditions are general...
AbstractThis paper discusses a class of linear semi-infinite programming problems with finite number...
AbstractBy using the theory of parametric semi-infinite programming, we show that the solution of a ...
A semi-infinite programming problem is an optimization problem in which finitely many variables appe...
In this short paper, we present a new constraint qualification (CQ) for linear semi-infinite program...
In this paper, we present a new method to solve linear semi-infinite programming. This method bases ...
We present a primal method for the solution of the semi-infinite linear programming problem with con...
International audienceWe focus on convex semi-infinite programs with an infinite number of quadratic...
An algorithm for semi-infinite programming using sequential quadratic programming techniques togeth...
We focus on convex semi-infinite programs with an infinite number of quadratically parametrized cons...
We consider methods for the solution of large linear optimization problems, in particular so-called ...
The aim of this work is to give an overview of methods for solving linear semi-infinite programming ...
AbstractIn this paper, we implement an extended version of the inexact approach proposed by Fang and...
A globally convergent algorithm is presented for the solution of a wide class of semi-infinite progr...
In this paper we present some semismooth Newton methods for solving the semi-infinite programming pr...
In this paper, the classical KKT, complementarity and Lagrangian saddle-point conditions are general...
AbstractThis paper discusses a class of linear semi-infinite programming problems with finite number...
AbstractBy using the theory of parametric semi-infinite programming, we show that the solution of a ...
A semi-infinite programming problem is an optimization problem in which finitely many variables appe...
In this short paper, we present a new constraint qualification (CQ) for linear semi-infinite program...
In this paper, we present a new method to solve linear semi-infinite programming. This method bases ...
We present a primal method for the solution of the semi-infinite linear programming problem with con...
International audienceWe focus on convex semi-infinite programs with an infinite number of quadratic...
An algorithm for semi-infinite programming using sequential quadratic programming techniques togeth...
We focus on convex semi-infinite programs with an infinite number of quadratically parametrized cons...
We consider methods for the solution of large linear optimization problems, in particular so-called ...
The aim of this work is to give an overview of methods for solving linear semi-infinite programming ...
AbstractIn this paper, we implement an extended version of the inexact approach proposed by Fang and...
A globally convergent algorithm is presented for the solution of a wide class of semi-infinite progr...
In this paper we present some semismooth Newton methods for solving the semi-infinite programming pr...
In this paper, the classical KKT, complementarity and Lagrangian saddle-point conditions are general...