AbstractWe propose that higher-dimensional extended objects (p-branes) are created by super-Planckian scattering processes in theories with TeV scale gravity. As an example, we compute the cross section for p-brane creation in a (n+4)-dimensional spacetime with asymmetric compactification. We find that the cross section for the formation of a brane which is wounded on a compact submanifold of size of the fundamental gravitational scale is larger than the cross section for the creation of a spherically symmetric black hole. Therefore, we predict that branes are more likely to be created than black holes in super-Planckian scattering processes in these manifolds. The higher rate of p-brane production has important phenomenological consequence...