AbstractWe present an infinite-game characterization of the well-founded semantics for function-free logic programs with negation. Our game is a simple generalization of the standard game for negation-less logic programs introduced by van Emden [M.H. van Emden, Quantitative deduction and its fixpoint theory, Journal of Logic Programming 3 (1) (1986) 37–53] in which two players, the Believer and the Doubter, compete by trying to prove (respectively disprove) a query. The standard game is equivalent to the minimum Herbrand model semantics of logic programming in the sense that a query succeeds in the minimum model semantics iff the Believer has a winning strategy for the game which begins with the Doubter doubting this query. The game for pro...