AbstractWe investigate how coarse embeddability of box spaces into Hilbert space behaves under group extensions. In particular, we prove a result which implies that a semidirect product of a finitely generated free group by a finitely generated residually finite amenable group has a box space which coarsely embeds into Hilbert space. This provides a new class of examples of metric spaces with bounded geometry which coarsely embed into Hilbert space but do not have property A, generalising the example of Arzhantseva, Guentner and Spakula
Abstract. Let A and B be countable discrete groups and let = A B be their free product. We show t...
Abstract. Let A and B be countable discrete groups and let = A B be their free product. We show t...
Les box spaces sont des espaces métriques construits avec des groups. Ils sont utiles comme exemples...
AbstractWe investigate how coarse embeddability of box spaces into Hilbert space behaves under group...
We generalize the construction of Arzhantseva, Guentner and Spakula of a box space of the free group...
The central idea of coarse geometry is to focus on the properties of metric spaces which survive und...
Dans une première partie une condition suffisante pour qu’un produit libre de groupes résiduellement...
We construct the first example of a coarsely non-amenable (= without Guoliang Yu’s property A) metri...
ABSTRACT. We construct the first example of a coarsely non-amenable ( = without Guoliang Yu’s proper...
Abstract. Uniform embeddability (in a Hilbert space), introduced by Gromov, is a geo-metric property...
AbstractIf one tries to embed a metric space uniformly in Hilbert space, how close to quasi-isometri...
AbstractWe study Guoliang Yu's Property A and construct metric spaces which do not satisfy Property ...
We introduce a notion of coarse embedding at infinity into Hilbert space for metric spaces, which is...
The objective of this series is to study metric geometric properties of disjoint unions of Cayley gr...
Abstract. Uniform embeddability (in a Hilbert space), introduced by Gro-mov, is a geometric property...
Abstract. Let A and B be countable discrete groups and let = A B be their free product. We show t...
Abstract. Let A and B be countable discrete groups and let = A B be their free product. We show t...
Les box spaces sont des espaces métriques construits avec des groups. Ils sont utiles comme exemples...
AbstractWe investigate how coarse embeddability of box spaces into Hilbert space behaves under group...
We generalize the construction of Arzhantseva, Guentner and Spakula of a box space of the free group...
The central idea of coarse geometry is to focus on the properties of metric spaces which survive und...
Dans une première partie une condition suffisante pour qu’un produit libre de groupes résiduellement...
We construct the first example of a coarsely non-amenable (= without Guoliang Yu’s property A) metri...
ABSTRACT. We construct the first example of a coarsely non-amenable ( = without Guoliang Yu’s proper...
Abstract. Uniform embeddability (in a Hilbert space), introduced by Gromov, is a geo-metric property...
AbstractIf one tries to embed a metric space uniformly in Hilbert space, how close to quasi-isometri...
AbstractWe study Guoliang Yu's Property A and construct metric spaces which do not satisfy Property ...
We introduce a notion of coarse embedding at infinity into Hilbert space for metric spaces, which is...
The objective of this series is to study metric geometric properties of disjoint unions of Cayley gr...
Abstract. Uniform embeddability (in a Hilbert space), introduced by Gro-mov, is a geometric property...
Abstract. Let A and B be countable discrete groups and let = A B be their free product. We show t...
Abstract. Let A and B be countable discrete groups and let = A B be their free product. We show t...
Les box spaces sont des espaces métriques construits avec des groups. Ils sont utiles comme exemples...