AbstractIn this paper a theory for the synthesis of geometric concepts is presented. The theory is focused on a constructive process that synthesizes a function in the geometric domain representing a geometric concept. Geometric theorems are instances of this kind of concepts. The theory involves four main conceptual components: conservation principles, action schemes, descriptions of geometric abstractions and reinterpretations of diagrams emerging during the generative process. A notion of diagrammatic derivation in which the external representation and its interpretation are synthesized in tandem is also introduced in this paper. The theory is exemplified with a diagrammatic proof of the Theorem of Pythagoras. The theory also illustrates...