AbstractIn this note, by analyzing the interpolation operator of Girault and Raviart given in [V. Girault, P.A. Raviart, Finite element methods for Navier–Stokes equations, Theory and algorithms, in: Springer Series in Computational Mathematics, Springer-Verlag, Berlin,1986] over triangular meshes, we prove optimal interpolation error estimates for Lagrange triangular finite elements of arbitrary order under the maximal angle condition in a unified and simple way. The key estimate is only an application of the Bramble–Hilbert lemma
En este trabajo estudiamos diferentes tipos de operadores de interpolación sobre elementos finitos a...
Given a function f defined on a bounded polygonal domain Ω ⊂ IR2 and a number N> 0, we study the ...
summary:An $L^2$-estimate of the finite element error is proved for a Dirichlet and a Neumann bounda...
Abstract. We prove optimal order error estimates for the Raviart-Thomas inter-polation of arbitrary ...
summary:We propose a simple method to obtain sharp upper bounds for the interpolation error constant...
We give some fundamental results on the error constants for the piecewise constant interpolation fun...
summary:We propose an analogue of the maximum angle condition (commonly used in finite element analy...
We study W1,p Lagrange interpolation error estimates for general quadrilateral Qk finite elements wi...
Abstract Angle conditions play an important role in the analysis of the finite element method. They ...
Abstract New estimates are established for the error between a function and its linear interpolant o...
summary:We present the error analysis of Lagrange interpolation on triangles. A new a priori error e...
AbstractIn this note, by analyzing the interpolation operator of Girault and Raviart given in [V. Gi...
Abstract. A basis for the quadratic (P2) nonconforming element of Fortin and Soulie on triangles is ...
Abstract. In this paper, we study the relation between the error estimate of the bilinear interpolat...
summary:We consider the error analysis of Lagrange interpolation on triangles and tetrahedrons. For ...
En este trabajo estudiamos diferentes tipos de operadores de interpolación sobre elementos finitos a...
Given a function f defined on a bounded polygonal domain Ω ⊂ IR2 and a number N> 0, we study the ...
summary:An $L^2$-estimate of the finite element error is proved for a Dirichlet and a Neumann bounda...
Abstract. We prove optimal order error estimates for the Raviart-Thomas inter-polation of arbitrary ...
summary:We propose a simple method to obtain sharp upper bounds for the interpolation error constant...
We give some fundamental results on the error constants for the piecewise constant interpolation fun...
summary:We propose an analogue of the maximum angle condition (commonly used in finite element analy...
We study W1,p Lagrange interpolation error estimates for general quadrilateral Qk finite elements wi...
Abstract Angle conditions play an important role in the analysis of the finite element method. They ...
Abstract New estimates are established for the error between a function and its linear interpolant o...
summary:We present the error analysis of Lagrange interpolation on triangles. A new a priori error e...
AbstractIn this note, by analyzing the interpolation operator of Girault and Raviart given in [V. Gi...
Abstract. A basis for the quadratic (P2) nonconforming element of Fortin and Soulie on triangles is ...
Abstract. In this paper, we study the relation between the error estimate of the bilinear interpolat...
summary:We consider the error analysis of Lagrange interpolation on triangles and tetrahedrons. For ...
En este trabajo estudiamos diferentes tipos de operadores de interpolación sobre elementos finitos a...
Given a function f defined on a bounded polygonal domain Ω ⊂ IR2 and a number N> 0, we study the ...
summary:An $L^2$-estimate of the finite element error is proved for a Dirichlet and a Neumann bounda...