AbstractSince Buchberger introduced the theory of Gröbner bases in 1965 it has become an important tool in constructive algebra and, nowadays, Buchberger's method is fundamental for many algorithms in the theory of polynomial ideals and algebraic geometry. Motivated by the results in polynomial rings a lot of possibilities to generalize the ideas to other types of rings have been investigated. The perhaps most general concept, though it does not cover all possible extensions, is the theory of graded structures due to Robbiano and Mora. But in order to obtain algorithmic solutions for the computation of Gröbner bases it needs additional computability assumptions. In this paper we introduce natural graded structures of finitely generated exte...