AbstractA graph is called integral if all eigenvalues of its adjacency matrix are integers. In this paper, we investigate integral complete r-partite graphs Kp1,p2,…,pr=Ka1·p1,a2·p2,…,as·ps with s=3,4. We can construct infinite many new classes of such integral graphs by solving some certain Diophantine equations. These results are different from those in the existing literature. For s=4, we give a positive answer to a question of Wang et al. [Integral complete r-partite graphs, Discrete Math. 283 (2004) 231–241]. The problem of the existence of integral complete multipartite graphs Ka1·p1,a2·p2,…,as·ps with arbitrarily large number s remains open
A graph $G$ is called integral if all eigenvalues of its adjacency matrix $A(G)$ are integers. In th...
AbstractA graph is integral if the spectrum (of its adjacency matrix) consists entirely of integers....
A graph $G$ is called {\it integral} if all zeros of the characteristic polynomial $P(G,x)$ are inte...
AbstractA graph is called integral if all the eigenvalues of its adjacency matrix are integers. In o...
AbstractA graph is called integral if all the eigenvalues of its adjacency matrix are integers. In t...
A graph is called integral if all the eigenvalues of its adjacency matrix are integers. In this pape...
AbstractA graph is called integral if all eigenvalues of its adjacency matrix are integers. In this ...
summary:A graph is called distance integral (or $D$-integral) if all eigenvalues of its distance mat...
AbstractA graph is called integral if all its eigenvalues (of the adjacency matrix) are integers. In...
AbstractWe obtain here an infinite family of integral complete tripartite graphs
AbstractA graph is integral if the spectrum (of its adjacency matrix) consists entirely of integers....
A graph is called integral if all its eigenvalues (of the adjacency matrix) are integers. In this pa...
A graph G is called integral or Laplacian integral if all the eigenvalues of the adjacency matrix A(...
AbstractA graph G is called integral if all eigenvalues of its adjacency matrix A(G) are integers. I...
The spectrum S(G) of a graph G is defined as the sequence of eigenvalues of its adjacency matrix. Th...
A graph $G$ is called integral if all eigenvalues of its adjacency matrix $A(G)$ are integers. In th...
AbstractA graph is integral if the spectrum (of its adjacency matrix) consists entirely of integers....
A graph $G$ is called {\it integral} if all zeros of the characteristic polynomial $P(G,x)$ are inte...
AbstractA graph is called integral if all the eigenvalues of its adjacency matrix are integers. In o...
AbstractA graph is called integral if all the eigenvalues of its adjacency matrix are integers. In t...
A graph is called integral if all the eigenvalues of its adjacency matrix are integers. In this pape...
AbstractA graph is called integral if all eigenvalues of its adjacency matrix are integers. In this ...
summary:A graph is called distance integral (or $D$-integral) if all eigenvalues of its distance mat...
AbstractA graph is called integral if all its eigenvalues (of the adjacency matrix) are integers. In...
AbstractWe obtain here an infinite family of integral complete tripartite graphs
AbstractA graph is integral if the spectrum (of its adjacency matrix) consists entirely of integers....
A graph is called integral if all its eigenvalues (of the adjacency matrix) are integers. In this pa...
A graph G is called integral or Laplacian integral if all the eigenvalues of the adjacency matrix A(...
AbstractA graph G is called integral if all eigenvalues of its adjacency matrix A(G) are integers. I...
The spectrum S(G) of a graph G is defined as the sequence of eigenvalues of its adjacency matrix. Th...
A graph $G$ is called integral if all eigenvalues of its adjacency matrix $A(G)$ are integers. In th...
AbstractA graph is integral if the spectrum (of its adjacency matrix) consists entirely of integers....
A graph $G$ is called {\it integral} if all zeros of the characteristic polynomial $P(G,x)$ are inte...