AbstractA generalized version of the exact model matching problem (GEMMP) is considered for linear multivariable systems over an arbitrary commutative ring K with identity. Reduced forms of this problem are introduced, and a characterization of all solutions and minimal order solutions is given, both with and without the properness constraint on the solutions, in terms of linear equations over K and K-modules. An approach to the characterization of all stable solutions is presented which, under a certain Bezout condition and a freeness condition, provides a parametrization of all stable solutions. The results provide an explicit parametrization of all solutions and all stable solutions in case K is a field, without the Bezout condition. Thi...