AbstractWe consider the nonlinear Sturm–Liouville problem (1)−(pu′)′+qu=au+−bu−+λu,in(0,2π),(2)u(0)=u(2π),(pu)′(0)=(pu)′(2π),where 1/p,q∈L1(0,2π), with p>0 a.e. on (0,2π), a,b∈L1(0,2π), λ is a real parameter, and u±(t)=max{±u(t),0} for t∈[0,2π]. Values of λ for which (1)–(2) has a non-trivial solution u will be called half-eigenvalues while the corresponding solutions u will be called half-eigenfunctions. The set of half-eigenvalues will be denoted by ΣH.We show that a sequence of half-eigenvalues exists, the corresponding half-eigenfunctions having certain nodal properties, and we obtain certain spectral and degree theoretic properties associated with ΣH. These properties yield results on the existence and non-existence of solutions of the...
We consider the nonlinear Sturm–Liouville problem ðpu0Þ0 þ qu auþ bu þ lu; in ð0; 2pÞ; ð1Þ uð0Þ ...
The nonlinear eigenvalue problem Lu+f(x,u)=λu in (a,b) , with u(a)=u(b)=0 , where Lu=−(p(x)u ′ ) ′ ...
The nonlinear eigenvalue problem Lu+f(x,u)=λu in (a,b) , with u(a)=u(b)=0 , where Lu=−(p(x)u ′ ) ′ ...
AbstractWe consider two different approaches for the numerical calculation of eigenvalues of a singu...
AbstractWe study the regular half-linear Sturm–Liouville equation −(pϕr(y′))′+qϕr(y)=λwϕr(y)on J=(a,...
AbstractIn this paper we extend some spectral properties of regular Sturm–Liouville problems to thos...
There are well-known inequalities among the eigenvalues of Sturm–Liouville problems with peri...
AbstractWe consider two different approaches for the numerical calculation of eigenvalues of a singu...
AbstractThere is considerable interest in determining the existence of eigenvalues of the Sturm–Liou...
AbstractThe eigenvalues of singular Sturm–Liouville problems defined over the semi-infinite positive...
Consider the half-eigenvalue problem (ϕp(x′))′+λa(t)ϕp(x+)−λb(t)ϕp(x−)=0 a.e. t∈[0,1], where 1<p<∞,...
AbstractThere is considerable interest in determining the existence of eigenvalues of the Sturm–Liou...
AbstractThe computation of eigenvalues of Sturm–Liouville problem with t-periodic boundary condition...
We consider the calculation of eigenvalues of singular Sturm-Liouville operators of the form −y′ ′ +...
We consider Sturm-Liouville equation y″+(λ-q)y=0 where q∈L1[0, a]. We obtain various conditions on t...
We consider the nonlinear Sturm–Liouville problem ðpu0Þ0 þ qu auþ bu þ lu; in ð0; 2pÞ; ð1Þ uð0Þ ...
The nonlinear eigenvalue problem Lu+f(x,u)=λu in (a,b) , with u(a)=u(b)=0 , where Lu=−(p(x)u ′ ) ′ ...
The nonlinear eigenvalue problem Lu+f(x,u)=λu in (a,b) , with u(a)=u(b)=0 , where Lu=−(p(x)u ′ ) ′ ...
AbstractWe consider two different approaches for the numerical calculation of eigenvalues of a singu...
AbstractWe study the regular half-linear Sturm–Liouville equation −(pϕr(y′))′+qϕr(y)=λwϕr(y)on J=(a,...
AbstractIn this paper we extend some spectral properties of regular Sturm–Liouville problems to thos...
There are well-known inequalities among the eigenvalues of Sturm–Liouville problems with peri...
AbstractWe consider two different approaches for the numerical calculation of eigenvalues of a singu...
AbstractThere is considerable interest in determining the existence of eigenvalues of the Sturm–Liou...
AbstractThe eigenvalues of singular Sturm–Liouville problems defined over the semi-infinite positive...
Consider the half-eigenvalue problem (ϕp(x′))′+λa(t)ϕp(x+)−λb(t)ϕp(x−)=0 a.e. t∈[0,1], where 1<p<∞,...
AbstractThere is considerable interest in determining the existence of eigenvalues of the Sturm–Liou...
AbstractThe computation of eigenvalues of Sturm–Liouville problem with t-periodic boundary condition...
We consider the calculation of eigenvalues of singular Sturm-Liouville operators of the form −y′ ′ +...
We consider Sturm-Liouville equation y″+(λ-q)y=0 where q∈L1[0, a]. We obtain various conditions on t...
We consider the nonlinear Sturm–Liouville problem ðpu0Þ0 þ qu auþ bu þ lu; in ð0; 2pÞ; ð1Þ uð0Þ ...
The nonlinear eigenvalue problem Lu+f(x,u)=λu in (a,b) , with u(a)=u(b)=0 , where Lu=−(p(x)u ′ ) ′ ...
The nonlinear eigenvalue problem Lu+f(x,u)=λu in (a,b) , with u(a)=u(b)=0 , where Lu=−(p(x)u ′ ) ′ ...