AbstractComtrans algebras are modules over a commutative ring R equipped with two trilinear operations: a left alternative commutator and a translator satisfying the Jacobi identity, the commutator and translator being connected by the so-called comtrans identity. The standard construction of a comtrans algebra uses the ternary commutator and translator of a trilinear product. If 6 is invertible in R, then each comtrans algebra arises in this standard way from the so-called bogus product.Consider a vector space E of dimension n over a field R. While the dimension of the space of all trilinear products on E is n4, the dimension of the space of all comtrans algebras on E is less, namely 56n4-12n3-13n2. The paper determines which trilinear pro...