AbstractDouble-sampling designs are commonly used in real applications when it is infeasible to collect exact measurements on all variables of interest. Two samples, a primary sample on proxy measures and a validation subsample on exact measures, are available in these designs. We assume that the validation sample is drawn from the primary sample by the Bernoulli sampling with equal selection probability. An empirical likelihood based approach is proposed to estimate the parameters of interest. By allowing the number of constraints to grow as the sample size goes to infinity, the resulting maximum empirical likelihood estimator is asymptotically normal and its limiting variance–covariance matrix reaches the semiparametric efficiency bound. ...