AbstractWe consider the applicability (or terminating condition) of the well-known Zeilberger's algorithm and give the complete solution to this problem for the case where the original hypergeometric term F(n,k) is a rational function. We specify a class of identities ∑k=0nF(n,k)=0,F(n,k)∈C(n,k), that cannot be proven by Zeilberger's algorithm. Additionally, we give examples showing that the set of hypergeometric terms on which Zeilberger's algorithm terminates is a proper subset of the set of all hypergeometric terms, but a super-set of the set of proper terms.RésuméNous considérons l'applicabilité (ou la condition de terminaison) du célèbre algorithme de Zeilberger et nous donnons la solution complète de ce problème dans le cas où le term...