AbstractWe describe a flexible approach to automated reasoning, where non-theorems can be automatically altered to produce proved results which are related to the original. This is achieved in the TM system through an interaction of the HR machine learning program, the Otter theorem prover and the Mace model generator. Given a non-theorem, Mace is used to generate examples which support the non-theorem, and examples which falsify it. HR then invents concepts which categorise these examples and TM uses these concepts to modify the original non-theorem into specialised theorems which Otter can prove. The methods employed by TM are inspired by the piecemeal exclusion, strategic withdrawal and counterexample barring methods described in Lakatos...