AbstractThe concept of regularity is defined for a class of join endomorphisms on a complemented modular lattice of finite rank. The properties of this class of endomorphisms are studied and it is shown that they are generalizations of endomorphisms on a finite dimensional vector space
AbstractThis paper is motivated by an open question: which graphs have a regular (endomorphism) mono...
AbstractA graph X is End-regular if its endomorphism monoid End X is regular in the semigroup sense,...
A lattice L is said to be dually semimodular if for all elements a and b in L, a ∨ b covers b implie...
AbstractThe concept of regularity is defined for a class of join endomorphisms on a complemented mod...
International audienceLet V be a finite dimensional real vector space, let g be the real span of a f...
summary:Characterization of congruence lattices of finite chains with either one or two endomorphism...
AbstractSome classical linear algebra results are translated to the language of lattices. In particu...
Let $G$ be a graph. Then $G$ is said to be End-regular if the set of all endomorphisms of $G$ forms ...
Some classical linear algebra results are translated to the language of lattices. In particular, we ...
For a finite lattice L, the congruence lattice Con L of L can be easily computed from the partially ...
Conditionally Accepted at RAMICS 2020Structures involving a lattice and join-endomorphisms on it are...
International audienceWe prove that the minimal chain recurrence classes of a holomorphic endomorphi...
Abstract. We extend the notion of the canonical extension of automorphisms of type III factors to th...
AbstractLet L be a finite lattice. A map f of the join irreducible elements of L to the meet irreduc...
Submitted to the Journal of Logic Methods in Computer ScienceStructures involving a lattice and join...
AbstractThis paper is motivated by an open question: which graphs have a regular (endomorphism) mono...
AbstractA graph X is End-regular if its endomorphism monoid End X is regular in the semigroup sense,...
A lattice L is said to be dually semimodular if for all elements a and b in L, a ∨ b covers b implie...
AbstractThe concept of regularity is defined for a class of join endomorphisms on a complemented mod...
International audienceLet V be a finite dimensional real vector space, let g be the real span of a f...
summary:Characterization of congruence lattices of finite chains with either one or two endomorphism...
AbstractSome classical linear algebra results are translated to the language of lattices. In particu...
Let $G$ be a graph. Then $G$ is said to be End-regular if the set of all endomorphisms of $G$ forms ...
Some classical linear algebra results are translated to the language of lattices. In particular, we ...
For a finite lattice L, the congruence lattice Con L of L can be easily computed from the partially ...
Conditionally Accepted at RAMICS 2020Structures involving a lattice and join-endomorphisms on it are...
International audienceWe prove that the minimal chain recurrence classes of a holomorphic endomorphi...
Abstract. We extend the notion of the canonical extension of automorphisms of type III factors to th...
AbstractLet L be a finite lattice. A map f of the join irreducible elements of L to the meet irreduc...
Submitted to the Journal of Logic Methods in Computer ScienceStructures involving a lattice and join...
AbstractThis paper is motivated by an open question: which graphs have a regular (endomorphism) mono...
AbstractA graph X is End-regular if its endomorphism monoid End X is regular in the semigroup sense,...
A lattice L is said to be dually semimodular if for all elements a and b in L, a ∨ b covers b implie...