AbstractThe classical method for constructing the least fixedpoint of a recursive definition is to generate a sequence of functions whose initial element is the totally undefined function and which converges to the desired least fixedpoint. This method, due to Kleene, cannot be generalized to allow the construction of other fixedpoints. In this paper we present an alternate definition of convergence and a new fixedpoint access method of generating sequences of functions for a given recursive definition. The initial function of the sequence can be an arbitrary function, and the sequence will always converge to a fixedpoint that is “close” to the initial function. This defines a monotonic mapping from the set of partial functions onto the set...
In the context of abstract interpretation for languages without higher-order features we study the n...
AbstractIn this paper, we investigate the structural properties of the set of fixpoints for the clas...
This paper presents a fixedpoint approach to inductive definitions. Instead of using a syntactic tes...
AbstractThis paper gives a generalization of a result by Matiyasevich which gives explicit rates of ...
A theorem is presented which has applications in the numerical computation of fixed points of recurs...
AbstractThis paper is concerned with the existence and properties of various fixpoints of nondetermi...
This paper is concerned with the relationship between the computational and fixpoint semantics of no...
AbstractThis paper develops a transformational paradigm by which nonnumerical algorithms are treated...
AbstractAn expression such as ∀x(P(x)↔ϕ(P)), where P occurs in ϕ(P), does not always define P. When ...
t1~~~~L~U U b ~~~~~~~TIC ~ gTATEM _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ L~~~~~~~~~~~~~~~~~~~~~~~~~...
A global convergence theory for a broad class of "monotonic" nonlinear programming algorithms is giv...
This paper develops a transformational paradigm by which nonnumerical algorithms are treated as fixe...
AbstractIn applicative theories the recursion theorem provides a term rec which solves recursive equ...
AbstractAn expression such as ∀x(P(x)↔ϕ(P)), where P occurs in ϕ(P), does not always define P. When ...
. We present a new fixpoint theorem which guarantees the existence and the finite computability of t...
In the context of abstract interpretation for languages without higher-order features we study the n...
AbstractIn this paper, we investigate the structural properties of the set of fixpoints for the clas...
This paper presents a fixedpoint approach to inductive definitions. Instead of using a syntactic tes...
AbstractThis paper gives a generalization of a result by Matiyasevich which gives explicit rates of ...
A theorem is presented which has applications in the numerical computation of fixed points of recurs...
AbstractThis paper is concerned with the existence and properties of various fixpoints of nondetermi...
This paper is concerned with the relationship between the computational and fixpoint semantics of no...
AbstractThis paper develops a transformational paradigm by which nonnumerical algorithms are treated...
AbstractAn expression such as ∀x(P(x)↔ϕ(P)), where P occurs in ϕ(P), does not always define P. When ...
t1~~~~L~U U b ~~~~~~~TIC ~ gTATEM _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ L~~~~~~~~~~~~~~~~~~~~~~~~~...
A global convergence theory for a broad class of "monotonic" nonlinear programming algorithms is giv...
This paper develops a transformational paradigm by which nonnumerical algorithms are treated as fixe...
AbstractIn applicative theories the recursion theorem provides a term rec which solves recursive equ...
AbstractAn expression such as ∀x(P(x)↔ϕ(P)), where P occurs in ϕ(P), does not always define P. When ...
. We present a new fixpoint theorem which guarantees the existence and the finite computability of t...
In the context of abstract interpretation for languages without higher-order features we study the n...
AbstractIn this paper, we investigate the structural properties of the set of fixpoints for the clas...
This paper presents a fixedpoint approach to inductive definitions. Instead of using a syntactic tes...