AbstractCoalgebra develops a general theory of transition systems, parametric in a functor T; the functor T specifies the possible one-step behaviours of the system. A fundamental question in this area is how to obtain, for an arbitrary functor T, a logic for T-coalgebras. We compare two existing proposals, Moss’s coalgebraic logic and the logic of all predicate liftings, by providing one-step translations between them, extending the results in Raul Andres Leal (2008) [34] by making systematic use of Stone duality. Our main contribution then is a novel coalgebraic logic, which can be seen as an equational axiomatisation of Moss’s logic. The three logics are equivalent for a natural but restricted class of functors. We give examples showing ...