Abstract Background Plants are capable of building up beneficial rhizosphere communities as is evidenced by disease-suppressive soils. However, it is not known how and why soil bacterial communities are impacted by plant exposure to foliar pathogens and if such responses might improve plant performance in the presence of the pathogen. Here, we conditioned soil by growing multiple generations (five) of Arabidopsis thaliana inoculated aboveground with Pseudomonas syringae pv tomato (Pst) in the same soil. We then examined rhizosphere communities and plant performance in a subsequent generation (sixth) grown in pathogen-conditioned versus control-conditioned soil. Moreover, we assessed the role of altered root exudation profiles in shaping the...