Abstract Large-scale deformations of a tubular object, or generalized cylinder, are often defined by a target shape for its center curve, typically using a parametric target curve. This task is non-trivial for free-form deformations or direct manipulation methods because it is hard to manually control the centerline by adjusting control points. Most skeleton-based methods are no better, again due to the small number of manually adjusted control points. In this paper, we propose a method to deform a generalized cylinder based on its skeleton composed of a centerline and orthogonal cross sections. Although we are not the first to use such a skeleton, we propose a novel skeletonization method that tries to minimize the number of intersections ...