Abstract Starting with conformally covariant correlation functions, a sequence of functional representations of the conformal algebra is constructed. A key step is the introduction of representations which involve an auxiliary functional. It is observed that these functionals are not arbitrary but rather must satisfy a pair of consistency equations corresponding to dilatation and special conformal invariance. In a particular representation, the former corresponds to the canonical form of the exact renormalization group equation specialized to a fixed point whereas the latter is new. This provides a concrete understanding of how conformal invariance is realized as a property of the Wilsonian effective action and the relationship to action-fr...