Hydrologists use a number of tools to compare model results to observed flows. These include tools to pre-process the data, data frames to store and access data, visualization and plotting routines, error metrics for single realizations, and ensemble metrics for stochastic realizations to calibrate and evaluate hydrologic models. We present an open-source Python package to help characterize predicted and observed hydrologic time series data called hydrostats which has three main capabilities: Data storage and retrieval based on the Python Data Analysis Library (pandas), visualization and plotting routines using Matplotlib, and a metrics library that currently contains routines to compute over 70 different error metrics and routines for ense...