Arithmetic matroids arising from a list A of integral vectors in Zn are of recent interest and the arithmetic Tutte polynomial MA(x, y) of A is a fundamental invariant with deep connections to several areas. In this work, we consider two lists of vectors coming from the rows of matrices associated to a tree T. Let T = (V, E) be a tree with |V| = n and let LT be the q-analogue of its Laplacian L in the variable q. Assign q = r for r ∈ ℤ with r/= 0, ±1 and treat the n rows of LT after this assignment as a list containing elements of ℤn. We give a formula for the arithmetic Tutte polynomial MLT (x, y) of this list and show that it depends only on n, r and is independent of the structure of T. An analogous result holds for another polynomial ma...