Topic modelling is an area of text mining that has been actively developed in the last 15 years. A probabilistic topic model extracts a set of hidden topics from a collection of text documents. It defines each topic by a probability distribution over words and describes each document with a probability distribution over topics. In applications, there are often many requirements, such as, for example, problem-specific knowledge and additional data, to be taken into account. Therefore, it is natural for topic modelling to be considered a multiobjective optimization problem. However, historically, Bayesian learning became the most popular approach for topic modelling. In the Bayesian paradigm, all requirements are formalized in terms of a prob...